
Root Cause Analysis of Failures in Microservices through Causal Discovery
Azam Ikram 1 Sarthak Chakraborty 2 Subrata Mitra 2 Shiv Kumar Saini 2 Saurabh Bagchi 1 Murat Kocaoglu 1

1Purdue University 2Adobe Research

Microservice-based Architecture

Modern cloud applications follow a network topology that consists of multiple components (mi-

croservices) connected through complex dependencies. It provides the following attractive fea-

tures:

Easy development: Developers can write independent microservices in parallel.

Smaller and faster deployments: Smaller codebase leads to quick deployments and therefore

enables Continuous Deployment.

Uncomplicated management: Individual microservices can be scale-down and scale-up.

Root Cause Analysis (RCA)

RCA is the process of finding the root cause of a failure.

Cluster of Microservices

Data CollectionUser Reliability
Engineer

Figure 1. The workflow of a microservice-based system from the usage point of a client and a Site Reliability

Engineer (SRE). Every oval is a microservice and the edges represent the call graph. Red-colored microservices

signify a failure but the effect is observed on the yellow-colored microservices.

Challenges

Debugging a microservice-based application is difficult because of the following reasons;

1. Extremely high workload and complex dependency structure between the microservices leads

to easy easy fault propagation.

2. Enormous amount of tracing and logging data makes it tedious to narrow down the failure to

a few services.

3. The delay in detecting the root cause of a fault can result in significant revenue loss.

Therefore, the root cause needs to be detected as soon as possible which leads to limited

number of anomalous samples.

Existing Solutions

The existing solutions fall short because they;

1. make parametric assumptions between the metrics of different microservices (such as

linear relationship between the CPU utilization of A and latency of B.

2. require expert domain knowledge about the architecture of the application or rely on

historical data from the past failures.

Key Observation

Consider anomalous data as the data coming from interventional distribution.

YX Z YX Z

Normal Anomalous

YX Z

F

Figure 2. The mapping from anomalous data to interventional data allows us to use causal discovery algorithms

with unknown targets to find the interventional target.

In our context, the interventional target is the root cause of the failure.

Root Cause Discovery (RCD) Algorithm

1. Hierarchical: Split the data into small subsets and find candidate targets.

2. Localized: Only find the interventional targets.

Theorem: Given access to a perfect conditional independence oracle, and under the causal sufficiency,

and the extended faithfulness assumptions RCD returns the true root cause variables.

RCD

Split

Root Causes

Merge

...

Level 

Level 1 Level 2

Level 3

Figure 3. RCD (left) follows the divide-and-conquer approach. It first splits the data and finds the interventional

targets from each subset. In the second phase, it combines the candidate root causes of all the subsets and

performs the same steps recursively. The example (right) shows an execution of RCD with 11 nodes. The orange

nodes are potential root causes that are carried to the next level for further processing and the red node (x9) is the
eventual root cause.

Evaluation

10 25 50 100 500 2500
Nodes

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

Top-1

PC
-Diagnosis

AutoMAP
CIRCA
RCD

10 25 50 100 500 2500
Nodes

Top-3

PC
-Diagnosis

AutoMAP
CIRCA
RCD

10 25 50 100 500 2500
Nodes

Top-5

PC
-Diagnosis

AutoMAP
CIRCA
RCD

Figure 4. RCD achieves similar top-k recall as Ψ-PC. It outperforms the other baselines because they either require

domain knowledge, human intervention, or rely only on lower-order tests such as cross covariance.

10 25 50 100 500 2500
Nodes

10 1

100

101

102

103

104

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

) PC
-Diagnosis

AutoMAP

CIRCA
RCD

Execution Time for top-k

Figure 5. The execution time required for RCD increases slower with the number of nodes than Ψ-PC (note the

logarithmic scale on the Y-axis), which does not terminate in a reasonable time for 500 and more nodes. ε-Diagnosis
achieves the best execution time but its usefulness is limited as its recall drops significantly when the number of

node increases.

10 25 50 100 500 2500
Anomalous Samples

0.0

0.2

0.4

0.6

0.8

Re
ca

ll

Top-1

PC
-Diagnosis

AutoMAP
CIRCA
RCD

10 25 50 100 500 2500
Anomalous Samples

Top-3

PC
-Diagnosis

AutoMAP
CIRCA
RCD

10 25 50 100 500 2500
Anomalous Samples

Top-5

PC
-Diagnosis

AutoMAP
CIRCA
RCD

Figure 6. As the number of samples grow, the top-k recall of RCD and Ψ-PC starts to increase as well. That is to

say, RCD can provide the same benefits as Ψ-PC while reducing the execution time significantly.

Table 1. The top-7 recall of ε-Diagnosis and RCD on data collected for three outages from a production-based

cloud application. The length of the vector represents the number of services that were flagged as root cause and

the individual number shows the number of metrics belonging to a particular service. The green color illustrates

that algorithm was able to correctly detect the root cause whereas the red color shows the algorithm could not find

the root cause.

Rank of Services from top-7 Time (sec)

Outage Metrics
Duration

(min)
ε-Diagnosis RCD ε-Diagnosis RCD

A 137 65 [1,1,1,1,1,1,1] [3,1,1,1,1] 0.145 112

B 147 72 [2,1,1,1,1,1] [3,1,1,1,1] 0.186 239.8

C 150 210 [3,1,1,1,1] [4,1,1,1] 0.146 22.57

Conclusion

Root cause analysis of failures is a challenging task

Considering the failure as an intervention on the failing node enables us to use approaches

from causal discovery literature to find the root cause.

RCD is a sound hierarchical and localized algorithm to estimate the root cause without the

exponential runtime.

Dependable Computing Systems Laboratory, Purdue University and Adobe Research


